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Abstract

We review the correspondence between synchronous games and their associated
∗-algebra. Building upon the work of (Helton et al., New York J. Math. 2017),
we propose results on algebraic and locally commuting graph identities. Based
on the noncommutative Nullstellensätze (Watts, Helton and Klep, Annales Henri
Poincaré 2023), we build computational tools that check the non-existence of
perfect C∗ and algebraic strategies of synchronous games using Gröbner basis
methods and semidefinite programming. We prove the equivalence between the
hereditary and C∗ models questioned in (Helton et al., New York J. Math. 2017).
We also extend the quantum-version NP-hardness reduction 3-Coloring∗ ≤p

3-SAT∗ due to (Ji, arXiv 2013) by exhibiting another instance of such reduction
Clique∗ ≤p 3-SAT∗.
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1 Introduction

A generic version of a two-player non-local game involved two spatially separated players and a
referee. Players attempt to convince the referee of the existence of a certain property by conducting
several rounds of interactions with the referee. A Boolean function, called a predicate, evaluates each
pair of inputs and outputs to indicate whether the players win or lose in the game. A comprehensive
introduction can be found in [CM14]. Generally, when the players share classical randomness, they
can win perfectly if and only if the underlying Boolean constraint system (BCS) is satisfiable. How-
ever, shared quantum resources generalize the classical strategy space, yielding quantum strategies.
There are certain games where quantum strategies admit non-zero advantage [Bel64, Mer90, Per90].
BCS non-local games also motivate new topics in complexity theory. Ji suggested the satisfiabil-
ity problems with quantum operator assignment and lifted several NP-hardness reductions to their
quantum versions in [Ji13]. In [AKS17], it is proved that quantum advantages only exist for certain
types of constraint satisfaction problems (CSP).

The synchronous game is a special subclass of non-local game, where two players share the same
input and output set, and the predicate requires a ‘consistency check’ [HMN+23]. In [BWHK23],
the theory of noncommutative (NC) real algebraic geometry is developed which bears on the per-
fectness of synchronous games. Graph homomorphism games are a subclass of synchronous games,
and from certain perfect strategies for the homomorphism game, we can abstract new graph identi-
ties. A detailed discussion is provided in [OP16]. Helton, Meyer, Paulsen, and Satriano [HMPS17]
investigate the existence of various types of operator-valued graph homomorphisms by examining
properties of the associated ∗-algebra of the associated synchronous games. They also suggested two
special types of algebra, the hereditary and locally commuting algebra. Some preliminary results
are presented from the literature, as well as questions for further exploration.

This report introduces the background of non-local games, summarizes some important results, out-
lines implementations of some computational tools, and contributes some new results. We leave
some problems open, hoping that subsequent works will fill these gaps.

2 Preliminaries and Notations

2.1 Non-local games and synchronous games

A two-player finite input-output game for players Alice (A) and Bob (B) is specified by a tuple
G = (IA, IB , OA, OB , λ) where |IA|, |IB |, |OA|, |OB | < ∞ and a predicate λ : IA × IB × OA ×
OB → {0, 1} indicating the win or lose outcome of a round. A strategy for the players is the
collection of probabilities {P(a, b|i, j)}i,j,a,b where (i, j) ∈ IA × IB and (a, b) ∈ OA × OB . It
can be established as follows: Two players agree on a measure space (Ω,F ,P) before the game,
and assign each i ∈ IA, j ∈ IB measurable functions fi, gj for Alice and Bob respectively. Here
fi : Ω→ OA, gj : Ω→ OB indicate the strategies. A strategy {fi, gj}i∈IA,j∈IB is perfect if

∀(i, j) ∈ IA × IB , P {ω ∈ Ω : λ(i, j, fi(ω), gj(ω)) = 1} = 1.

A non-local game is a synchronous game provided that IA = IB = I and OA = OB = O, and for
any i ∈ I , the predicate satisfies λ(i, i, a, b) = δa,b for any a, b ∈ O.

2.2 Basics of groups and ∗-algebras

Let S be an arbitrary set, FS = {
∏n∈N∪{0}

i=1 xi : xi ∈ S ∪ S−1} is the free group with generating
set S. A unital algebra A (i.e., 1A ∈ A) is a ∗-algebra (over a field F with an involution) if it is
equipped with an involution x 7→ x∗, such that (i) (1A)∗ = 1A and (a∗)∗ = a for any a ∈ A; (ii)
for any a, b ∈ A, (ab)∗ = b∗a∗; (iii) for any a, b ∈ A, λ, µ ∈ F, (λa + µb)∗ = λ∗a∗ + µ∗b∗. A ∗-
homomorphism π : A → B between two ∗-algebrasA and B is an algebra homomorphism such that
∀a ∈ A, π(a∗) = π(a)∗. We define the free noncommutative ∗-algebra on a generating set S by
F∗ 〈S〉 := {

∑n∈N∪{0}
i=1 λi

∏mi

j=1 xi,j : mi ≥ 1, λi ∈ F, xi,j ∈ S∪S∗}. Both groups and ∗-algebras
can be defined by presentations. We define 〈S : R〉 as the group quotient FS/ 〈R〉 where R ⊆ FS

and 〈R〉 ⊴ FS , and define F∗ 〈S : R〉 as the quotient of algebra F∗ 〈S〉 / 〈〈R〉〉. For two groups
G = 〈SG : RG〉, H = 〈SH : RH〉, the group free product G ∗ H = 〈SG ∪ SH : RG ∪RH〉.
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Analogously, we can define the algebra free product of two algebras G = F∗ 〈SG : RG〉 and
H = F∗ 〈SH : RH〉 as G∗H = F∗ 〈SG ∪ SH : RG ∪RH〉. For two group or algebra elements a, b,
we use [a, b] = ab− ba to specify their commutator.

The sum-of-square cone SOSA := {
∑

i a
∗
i ai : ai ∈ A} is a hermitian subset of A. A partial

ordering on A can be induced by setting x ≤ y if x − y ∈ SOSA for any x, y ∈ A. A state on A
is a linear functional ψ : A → F ∈ {R,C} such that ψ(1A) = 1, ψ(a∗) = ψ(a)∗ and ψ(a∗a) ≥ 0
for all a ∈ A, and it is called tracial if ∀a, b ∈ A, ψ(ab) = ψ(ba). Intuitively, for any state ψ on A,
ψ(SOSA) ⊆ R≥0. We denote Herm(A) = {a ∈ A : a∗ = a} as the hermitian elements in A, and
Abdd as the ∗-subalgebra of bounded elements in A, which is defined by

Abdd := {a ∈ A : ∃B ∈ R≥0, a
∗a ≤ R · 1} .

We say A is Archimedean if A = Abdd.

2.3 Algebra of synchronous games, and hierarchy of strategies

The key idea of non-local games is that quantum resources allow a greater feasible set of corre-
lations than in the classical setting. Each synchronous game G = (I,O, λ) is associated with a
game ∗-algbera, called the synchronous algebra, which is the quotient C[F(|I|, |O|)]/I(G), and
is denoted as A(G). Here F(|I|, |O|) is the free product of |I| unitary groups, each of order |O|.
Alternatively, the generators {xi,a}i∈I,a∈O abstract the algebraic properties of projection-valued
measures (PVMs), and the ∗-closed, two-sided ideal I(G) is generated by following relations

• x2i,a − xi,a, ∀i ∈ I, a ∈ O • x∗i,a − xi,a, ∀i ∈ I, a ∈ O
•
∑

a∈O xi,a − 1, ∀i ∈ I • xi,axj,b, ∀(i, j, a, b) ∈ λ−1({0}).

Based on the existence of unital ∗-homomorphism from A(G) to certain unital ∗-algebras B, we
introduce the concept of perfect t-strategy (or equivalently, t-satisfiability). Certain choices of t
are {loc, q, qa, qc, C∗, hered, alg}, and we focus only on a few of them in this work. Specifically,
we write A(G)→ B if there is a unital ∗-homomorphism ρ : A(G)→ B. [CM14, PSS+16] suggest
the following definitions:

1. G has a perfect loc-strategy if A(G)→ C.

2. G has a perfect q-strategy if A(G)→ Cd×d, d ∈ N.

3. G has a perfect qa-strategy if A(G)→RU 2.

4. G has a perfect qc-strategy if A(G)→ (T , τ) for a unital C∗-algebra T with a tracial state τ .
5. G has a perfect C∗-strategy if A(G)→ B(H) for a non-trivial Hilbert spaceH.
6. G has a perfect alg-strategy if A(G) 6= (0).

The definition of hered-strategy is postponed to Section 5. We refer readers to [HMPS17, Har23,
OP16] for detailed information on their properties. Denote Mt as the set of t-models, i.e., the
existence of perfect t-strategies of all synchronous games, the following hierarchical order holds:

Mloc (Mq ⊆Mqa ⊆Mqc (MC∗ ⊆Mhered (Malg.

There are certain constructions of synchronous games where the consecutive neighboring models
differ. For instance, Mloc 6= Mq [GS24] andMqc 6= MC∗ [PS23]. It is proved in [Oza13] that
deciding whetherMqa =Mqc is equivalent to Connes embedding conjecture, which is announced
false by Ji, Natarajan, Vidick, Wright, and Yuen in [JNV+22] as a by-product of the MIP∗ = RE
result. We will proveMC∗ =Mhered for synchronous games.

3 Algebraic and locally commuting clique number

We are interested in two special graph identities, i.e., the algebraic clique number, and the lo-
cally commuting clique number, which are introduced by Helton, Meyer, Paulsen, and Satriano
in [HMPS17]. They are derived from the following definition of the graph homomorphism game.

2RU is an ultrapower of the hyperfinite II1 factor R, which is beyond the scope of our discussion. For
detailed preliminaries see [Oza13].
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Definition 3.1. Given two graphs G,H , the graph homomorphism game is the synchronous game
G = (I,O, λ), such that I = V (G), O = V (H), and predicate λ satisfies

λ(a, a, u, v) = δu,v, λ(a, b, u, v) =

{
1 (a ∼G b ∧ u ∼H v) ∨ (a 6∼G b)

0 otherwise.

Throughout the report, we use the notation Hom(G,H) to represent the above graph homomorphism

game between G and H . We denote G
alg−→ H if A(Hom(G,H)) 6= (0). The relation of algebraic

graph homomorphism is transitive, in view of the following theorem.

Proposition 3.1. For any graphs G,H,K, G
alg−→ H and H

alg−→ K implies G
alg−→ K.

Proof. The proof closely resembles the proof in the lc-case found in Lemma 8.1 of [HMPS17].
For any g ∈ V (G), k ∈ V (K), we define xg,k :=

∑
h∈V (H) xg,h ⊗ xh,k. With this con-

struction, we claim that C 〈xg,k〉 is non-trivial, since if xg,k = 0 for any (g, k), then 0 =∑
k∈V (K) xg,k =

∑
k∈V (K)

∑
h∈V (H) xg,h ⊗ xh,k =

∑
h∈V (H) xg,h ⊗

∑
k∈V (K) xh,k = 1, then

one of A(Hom(G,H)) and A(Hom(H,K)) is forced to be trivial, a contradiction. By∑
k∈V (K)

xg,k =
∑

k∈V (K)

∑
h∈V (H)

xg,h ⊗ xh,k =
∑

h∈V (H)

xg,h ⊗
∑

k∈V (K)

xh,k = 1;

x2g,k =
∑

h,h′∈V (H)

xg,hxg,h′ ⊗ xh,kxh′,k =
∑

h∈V (H)

x2g,h ⊗ x2h,k =
∑

h∈V (H)

xg,h ⊗ xh,k = xg,k;

xg,kxg′,k′ =
∑

h,h′∈V (H)

xg,hxg′,h′ · 1g∼Gg′∧h∼Hh′ ⊗ xh,kxh′,k′ · 1h∼Hh′∧k∼Kk′

= xg,kxg′,k′ · 1k∼Kk′∧g∼Gg′ ;

xg,kxg,k′ =
∑

h,h′∈V (H)

xg,hxg,h′ ⊗ xh,kxh′,k′ =
∑

h∈V (H)

x2g,h ⊗ xh,kxh,k′ = x2g,k · δk,k′ ,

the algebra C 〈xg,k〉 vanishes on I(Hom(G,K)), resulting in the desired A(Hom(G,K)).

For any graphG, we define the algebraic clique number ωalg(G) and the locally commuting clique
number ωlc(G) by

ωalg(G) = max
{
n ∈ N |Kn

alg−→ G
}
,

ωlc(G) = max {n ∈ N | A(Hom(Kn, G))/ 〈[xi,u, xj,v] : u ∼G v, ∀i, j ∈ [n]〉 6= (0)} .

They are analogs of the algebraic chromatic number χalg(G) and the locally commuting chro-
matic number χlc(G) discussed in [HMPS17] (these chromatic numbers are defined by replacing
Hom(Kn, G) by Hom(G,Kn) in the above definitions). We present two results, as the follow-up of
Helton et al.’s result on algebraic chromatic numbers and some problems they left open.

It is shown in [HMPS17] that there is an isomorphism between each game ∗-algebra
C[F(|I|, |O|)]/I(G) to a free unital complex algebra C 〈xi,a : i ∈ I, a ∈ O〉 /I(|I|, |O|), where
in the latter algebra all relations are preserved except for x∗i,a − xi,a. Thus, in the latter context, we
do not distinguish between these two algebras since their mutual interpretation is natural. Besides,
it is proved in the same literature that AF(G) = AQ(G) ⊗Q F for any field F containing Q, which
enables we to analyze the algebraic graph identities using a noncommutative analog of the Gröbner
basis (GB) method. We herein briefly review the definition of GB and its fundamental properties.
Definition 3.2. Given an NC multivariate polynomial ring C 〈x〉 with a fixed monomial order, and
I is an ideal of C 〈x〉. A subset S ⊆ I is a Gröbner basis of I if 〈LT(S)〉 = I, where LT(S) is the
leading terms of members of S. If I admits finite generating relations {hi}mi=1, its NC GB can be
obtained by applying the NC version of Buchberger algorithm on the initial set {h1, . . . , hm} (for
details see [Mor86]).
Theorem 3.2. [Mor86] For any polynomial f ∈ C 〈x〉, I ⊆ C 〈x〉 is a (left) ideal. If S is a GB of I,
then the remainder r of f being (left) divided by S is unique (independent of the order of division).
We denote the procedure as f −→S r, where r = 0 if and only if f ∈ I .
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With the aid of Gröbner basis, the following result is shown:

Theorem 3.3. [HMPS17] Every graph is algebraically 4-colorable.

The proof of the above theorem is computer-assisted, by examining the explicit expression of the
NC GB of the ideal and checking whether 1 ∈ I(Hom(G,K4)). By a similar argument, we can
work out the general expression for the NC GB of the ideal I(Hom(Kn,Km)) and show a similar
argument for the algebraic clique number.

Theorem 3.4. LetKm be the complete graph onm vertices. Then ωalg(Km) = m form ∈ {1, 2, 3},
and ωalg(Km) ≥ n for any n ∈ N and m ≥ 4.

Proof. We first prove the second assertion. The result is immediate when n ≤ m, by the inequality
ωalg(Km) ≥ ω(Km) = m ≥ n. It suffices to show that the assertion holds for n > m ≥ 4.
Suppose we assign natural indices to vertices of Kn and Km, specified by [n] = {1, . . . , n} and
[m] = {1, . . . ,m}. Under the natural graded lexicographic monomial ordering

∀i, j ∈ [n], u, v ∈ [m], xi,u ≺ xj,v ⇐⇒ i < j ∨ (i = j ∧ u < v),

the Gröbner basis of I(Hom(Kn,Km)) consists of the following relations

m∑
v=1

xi,v − 1, ∀i ∈ [n]; x2i,v − xi,v, ∀i ∈ [n], v ∈ [m− 1];

xi,vxj,v, ∀i 6= j ∈ [n], v ∈ [m− 1]; xi,uxi,v, ∀i ∈ [n], u 6= v ∈ [m− 1];

1−
m−1∑
u=1

(xi,u + xj,u) +
∑

u ̸=v∈[m−1]

(xi,uxj,v + xj,uxi,v) , ∀i 6= j ∈ [n];

1−
m−1∑
u=1

(xi,u + xj,u) +
∑

u ̸=v∈[m−1]

(xi,uxj,v + xj,uxi,v)−
∑

u,v,w∈[m−1]
u,v,w distinct
w ̸=m−2

xi,uxj,vxi,w

−
∑

u∈[m−3]
v∈[m−1]\{u}

xi,uxj,vxi,u +
∑

u∈[m−3]

xi,m−1xj,uxi,m−2, ∀i 6= j ∈ [n];

2−
m−1∑
u=1

(ci,uxi,u + cj,uxj,u + ck,uxk,u)

+
∑

u ̸=v∈[m−1]

[
(1ci,u=cj,u=2 + 1) · xi,uxj,u + (1ci,u=ck,u=2 + 1) · xi,uxk,u

]
−

∑
u,v,w∈[m−1]
u,v,w distinct
w ̸=m−2

xi,uxj,vxk,w −
∑

u ̸=v∈[m−1]

xi,uxj,vxk,u +
∑

u∈[m−3]

xi,m−1xj,uxk,m−2,

∀ distinct i, j, k ∈ [n], ∀t ∈ [n], ℓ ∈ [m− 1], ct,ℓ ∈ {1, 2},

∀ℓ, ℓ′ ∈ [m− 3],
∑

t∈{i,j,k}

1ct,ℓ=2 = 2, ct,ℓ = ct,ℓ′ ; ∀ℓ ∈ {m− 1,m− 2},
∑

t∈{i,j,k}

1ct,ℓ=2 = 1.

It follows that 1 6∈ I(Hom(Kn,Km)) when m ≥ 4. Meanwhile, computation shows that K4 is
the minimal graph satisfying ωalg(G) = ∞, and I(Hom(K|V (G)|+1, G)) are indeed trivial for any
proper subgraph G ⊂ K4. Take G = Km, inequality m = ω(Km) = ωloc(Km) ≤ ωalg(Km) <
m+ 1 indicates that ωalg(Km) = m for m ∈ {1, 2, 3}.

Remark 3.1. The transitivity of algebraic homomorphism shown in Proposition 3.1 allows us to

extend the result in Theorem 3.4. If a graph G admits a 4-clique, then Kn
alg−→ G for any n ∈ N

since Kn
alg−→ K4 and K4

alg−→ G (by K4 −→ G). Consequently, it forces ωalg(G) =∞ as well.

Theorem 3.5. ωC∗(K4) = ω(K4) = 4.

5



Proof. It suffices to prove αC∗(K4) < 5. By Theorem 4.1, the 5-clique game on graph K4 admits
a perfect C∗-strategy if there exists a positive semidefinite matrix S with degree bound d ∈ N such
that 1 + [x]∗dS[x]d ∈ I(Hom(K5,K4)). With the aid of an SDP, we obtained a refutation when
d = 1 (see document Hom(K5, K4)CstarRefutation.txt3 for their expressions). Thus, from
4 = ω(K4) ≤ ωC∗(K4) < 5 the result follows. The result yields another strict separation between
C∗-satisfiability and algebraic satisfiability.

Lovász introduced the theta function ϑ(·) [Lov79], which bounds the Shannon capacity of a graph.
The Lovász sandwich theorem says that for any graph G, ω(G) ≤ ϑ(G) ≤ χ(G). Ortiz and Paulsen
[OP16] strengthened this inequality to ωC∗(G) ≤ ϑ(G) ≤ χC∗(G). It is questioned in [HMPS17]
that whether ωt(G) ≤ ϑ(G) ≤ χt(G) holds for t ∈ {lc, hered}. We propose a method to prove
inequality ωlc(G) ≤ ϑ(G) for a family of graphs, and postpone the proof of sandwich theorem when
t = hered to Section 5. For preciseness, we use Alc(Hom(G,H)) to denote the locally commuting
graph homomorphism game algebra with ideal Ilc(Hom(G,H)) being I(Hom(G,H)) combined
with the locally commuting conditions.

Lemma 3.6. [HMPS17] For a graph G and n ≥ 2, for any (n − 1)-clique S in G, and NS =
{u ∈ V (G) : ∀v ∈ S, u ∼G v} being the fully-connected neighborhood of S, then

Alc(Hom(Kn, G)) ∼=
⊕
S⊆G

S is a (n − 1)-clique

C|NS |(n−1)!.

Lemma 3.7. For any graph G, n ∈ N, and Q ⊆ G is the subgraph obtained by excluding all
vertices and edges that are not in any n-clique of G. Then Alc(Kn, G) ∼= Alc(Kn, Q).

Proof. It suffices to consider those edges with endpoints in n-cliques, but the edge itself is not
included in any n-cliques. Suppose e = {u, v} is such an edge in a 2 ≤ m < n clique (since the
edge itself is a 2-clique). Employing Lemma 3.7, we have

Alc(Kn, G) ∼=
⊕
S⊆G

S an (n − 1)-clique

C|NS |(n−1)!

∼=
⊕

S⊆G,u∈NS ,v ̸∈NS

S an (n − 1)-clique

C|NS |(n−1)! ⊕
⊕

S⊆G,v∈NS ,u ̸∈NS

S an (n − 1)-clique

C|NS |(n−1)! ⊕
⊕

S⊆G,u,v ̸∈NS

S an (n − 1)-clique

C|NS |(n−1)!,

while the case u, v ∈ NS is excluded by the assumption. Above algebra is equivalent toAlc(Kn, G\
{e}), by the fact that amid the choices for (n− 1)-cliques in G \ {e}, exactly one of the three cases
holds. Iteratively deleting these edges and vertices by composing the previous results gives rise to
the desired subgraph Q.

Lemma 3.8. In the above subgraph Q and a vertex v connecting all the remaining vertices, if Q is
connected, it holds that

∑
i∈[n] xi,v = 1.

Proof. We notice that the product term
∏m

j=1

∑
w xj,w 6= 0 if and only if there is a m-clique among

the vertices involved in the sum over w. Since v is in every n-clique of Q (else we will have an
(n+ 1)-clique {v} ∪ S for an n-clique S ⊆ Q). By the locally commuting conditions,

n∏
i=1

xi,v + ∑
w∈Q\{v}

xi,w

 =
∑
S⊆Q

S an n-clique

∏
i∈[n]
ui∈S

xi,ui

=

n∑
i=1

xi,v
∑

S⊆Q\{v}
S an (n − 1)-clique

∏
j∈[n]\{i}
wj∈S

xj,wj
.

3Specifically, the document contains the value of {fi}, {gi} under basis [x]d and matrix S such that 1 +
[x]∗dS[x]d =

∑
i fihi +

∑
i h

∗
i gi, where hi are the generating relations of I(Hom(K5,K4)).
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Here the choices of ui over S are mutually distinct, i.e., if S = {v1, . . . , vn}, then ui = vσ(i) where
σ is a permutation of the indices [n]. Notice that for any i ∈ [n],

xi,v
∏

j∈[n]\{i}

xj,v + ∑
w∈Q\{v}

xj,w

 = xi,v
∑
S⊆Q

S an (n − 1)-clique

∏
j∈[n]\{i}
wj∈S

xj,wj

= xi,v

 ∑
S⊆Q,v ̸∈S

S an (n − 1)-clique

∏
j∈[n]\{i}
wj∈S

xj,wj
+

∑
S⊆Q,v∈S

S an (n − 1)-clique

∏
j∈[n]\{i}
wj∈S

xj,wj


= xi,v

∑
S⊆Q\{v}

S an (n − 1)-clique

∏
j∈[n]\{i}
wj∈S

xj,wj .

The second term in the third equality vanishes since xi,vxj,wj
evaluates to 0 whenever wj = v. It

follows that summing over i in the above expression coincides with the previous equation, i.e.,

n∑
i=1

xi,v
∏

j∈[n]\{i}

xj,v + ∑
w∈Q\{v}

xj,w


︸ ︷︷ ︸

=1n−1=1

=

n∏
i=1

xi,v + ∑
w∈Q\{v}

xi,w


︸ ︷︷ ︸

=1n=1

,

which directly indicates that
∑

i∈[n] xi,v = 1.

Theorem 3.9. Let {xi,v}i∈[n],v∈V (G) be the generators of Alc(Kn, G), then

span

{
n∑

i=1

xi,v + Ilc(Hom(Kn, G)) : v ∈ V (G)

}
= span {ev : v ∈ V (G)} /W,

where ev is a basis element corresponding to each v ∈ V (G). Denote Q ⊆ G as the subgraph of
G obtained by excluding all the edges and vertices that are not in any n-cliques of G. Define the
neighborhood set NS = {w ∈ G : ∃v ∈ S, w ∼G v}, the subspaceW is spanned by the following
linear relations

{ev : ∀(n− 1)-clique S ⊆ G, v 6∈ NS} ∪ {ev − 1 : v ∼Q w, ∀w ∈ V (Q) \ {v}}

∪

{∑
v∈H

ev −m : H ⊆ V (Q) being minimal, ∀n-clique C ⊆ Q, |C ∩H| = m

}
.

For those vertex subset H being not ‘minimal’, it admits a decomposition H = H1 tH2 such that∑
v∈H1

ev = m1,
∑

v∈H2
ev = m2 and it follows that m = m1 +m2. Thus, we are interested in

the minimal Hs as they induces those linear relations that are building blocks of the subspace.

Proof. To prove the first relation, we first examine the case when v 6∈ NS for any (n−1)-clique S in
G. The trivial case is when v is isolated, then ∀u ∈ G\{v}, i, j ∈ [n], xi,uxj,v = 0. By x2j,v = xj,v
and xi,vxj,v = δijx

2
i,v , this implies thatAlc(Kn, G) = Alc(Kn−1, G\{v})⊕

⊕n
j=1Alc(Kn−1, G\

{v})xj,v ∼= Alc(Kn−1, G \ {v}) by the locally commuting condition. Thus every xi,v vanishes and∑
i∈[n] xi,v =

∑
i∈[n] 0 = 0 when n is enumerable.

Suppose S ⊆ G is the maximal m-clique in G such that m < n − 1 and v ∈ NS . Without loss
of generality, we assume that G is connected, and for disconnected graphs G it suffices to consider
the analog of the proof on each subalgebra of ∗j Alc(Hom(Kn, Cj)), where Cj are the connected
components of G. Denote Hv := [V (G) \ (S ∪ {v})] ∩Nv , by Lemma 3.6, we have

Alc(Kn, G) ∼= Alc (Kn−1, S tHv)⊕
⊕
y ̸=v

Alc(Kn−1, Ny).

We claim that in S t Hv there is no (n − 1)-clique, since by a contradictory argument, if there is,
then StHv will be the maximal clique where v ∈ NS⊔Hv

and |StHv| = n−1 > m, contradicting
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the minimality assumption. Thus Alc (Kn−1, S tHv) = (0). As for the second subalgebra,⊕
y ̸=v

Alc(Kn−1, Ny) =
⊕

y∈S⊔Hv

Alc(Kn−1, Ny)⊕
⊕

y∈V (G)\(Nv∪{v})

Alc(Kn−1, Ny)

∼=
⊕

y∈V (G)\(Nv∪{v})

Alc(Kn−1, Ny),

where the second isomorphism arises from the fact that there is no (n − 2)-clique in Ny for any
y ∈ S tHv , since if there is, together with {y, v} they will form a n-clique. Thus, Alc(Kn, G) ∼=⊕

y∈V (G)\(Nv∪{v})Alc(Kn−1, Ny), and xi,v annihilates since v 6∈ Ny for any y ∈ V (G) \ (Nv ∪
{v}). It follows again that

∑
i∈[n] xi,v = 0.

The second linear relation can be obtained from Lemma 3.7 and 3.8, and the last relation can be
analogously derived. Suppose H = {v1, . . . , v|H|}, each n-clique in Q has exactly m ≥ 1 members
in H . Then by an analogous statement, suppose the n-cliques in Q are listed as {Cℓ}kℓ=1, and each
v ∈ H falls into cliques {Cℓ}ℓ∈Iv , where Iv ⊆ [k]. We have

∑
i∈[n]

∑
v∈H

xi,v
∏

j∈[n]\{i}

∑
u∈Q

xj,u

 =
∑
i∈[n]

∑
v∈H

xi,v
∑
ℓ∈Iv

∑
wj∈Cℓ\{v}

∏
j∈[n]\{i}

xj,wj

=
∑
v∈H

∑
ℓ∈Iv

∑
wj∈Cℓ

∏
j∈[n]

xj,wj
= m ·

k∑
ℓ=1

∑
wj∈Cℓ

∏
j∈[n]

xj,wj︸ ︷︷ ︸
=
∏n

i=1(
∑

v∈Q xi,v)=1

= m.

where the second last equality is due to
⊎

v∈H,ℓ∈Iv
V (Cℓ) =

⊎
i∈[m],ℓ∈[k] V (Cℓ), i.e., traversing

vertices v ∈ H and summing the exponent-free product corresponds to the n-cliques that v falls in
results in an m-copy of all the products of n-cliques in Q. Here

⊎
stands for the multiset.

The case for Q being disconnected is immediate, since if there are connected components
C1, C2, . . . , Cr and such set H yields the form H =

⊔r
j=1Hj where Hj is subset of each com-

ponent Cj . Each n-clique of Q falls into exactly one of {Cj}j∈[r], and its vertices will appear only
in one of the vertex sets {Hj}j∈[r]. By an analogous statement we have

∑
v∈H

∑
i∈[n] xi,v =∑

j∈[t]

∑
v∈Hj

∑
i∈[n] xi,v = m, and we omit the details here.

Finally, by composing all the statements above, we take mapping
∑

i∈[n] xi,v 7→ ev for each v ∈
V (G) and the result follows immediately.

Remark 3.2. The relation {ev − 1 : ∀u ∈ V (Q) \ {v}, u ∼Q v} can be combined with the latter
one. Since by taking H = {v}, C ∩H = {v} holds for any n-clique C in Q, whence m = 1.

Theorem 3.9 allows us to mimic Sobchuk’s constructive proof of αq(G) ≤ ϑ(G) in [GS24] (section
6.4), and give a proof of ωlc(G) ≤ ϑ(G) for a certain family of graph G. Prior to our construction,
we present a preliminary result on the Lovász theta function.

Theorem 3.10. For any graph G, denote 1 as the all-one vector in C|V (G)|, then

ϑ(G) =


sup
S

〈
S ,11T

〉
s.t. Su,v = 0, ∀u, v ∈ V (G), u ∼G v;

Tr(S ) = 1; S ∈ S|V (G)|
+

4;

 . (1)

Proposition 3.11. For a graph G such that for any such vertex subset H we have |C ∩ H| = 1
(m = 1) for any n-clique of C of subgraph Q, there exists a feasible decision variable S of the
SDP associated with ϑ(G), such that

〈
S ,11T

〉
/Tr(S ) = n.

4we use Sℓ
+ to specify the cone of symmetric positive semidefinite matrices with dimension ℓ× ℓ.
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Proof. Suppose H = {H1, . . . , Hr} is the set of all such subsets. Take Hmax = argmaxi∈[r] |Hi|,
where Hmax = {vk1

, . . . , vkh
}, we define a linear map τ : {1} ∪ {ev : v ∈ V (G)} → Ch by

τ(1) = 1h, τ(evki
) = ei ∈ Ch : [ei]j = δij .

As for any vertex subset H 6= Hmax, we keep τ to be consistent on Hmax ∩ H . For vertices in
H \Hmax := {vt1 , . . . , vtp}, the index set [h] admits a decomposition [h] =

⊔p
j=1 Ij , where Ij is

the neighboring vertices of vtj in Hmax, i.e., Ij = Nvtj
∩Hmax. Note that {Ij}pj=1 are disjoint sets,

since if Ij1 ∩ Ij2 6= ∅ for some j1, j2 ∈ [p] indicates that vtj1 and vtj2 are in the same n-clique C,
making |C ∩ H| ≥ 2, a contradiction. Then we define τ(evtj ) =

∑
i∈Ij

τ(evki
) for each j ∈ [p].

Finally, for those vertices w ∈ V (G) \ V (Q), we set τ(ew) = 0h.

If we set up a matrix S ∈ C|V (Q)|, such that Su,v = 〈τ(eu), τ(ev)〉. Then if u 6∼Q v, they must
fall into different n-cliques in Q, and by our construction, u and v are neighbors of two vertices
in Hmax, and thus τ(eu) and τ(ev) admit no common non-zero entries in any dimensions. Then it
follows immediately that Su,v = 0 for all u 6∼Q v.

Since the image of τ are {0, 1}-vectors, it holds that ‖τ(ev)‖2 =
〈
τ(ev),1

h
〉
. Thus we have

Tr(S ) =
∑

v∈V (G)

〈τ(ev), τ(ev)〉 =
∑

v∈V (Q)

〈τ(ev), τ(ev)〉 =
∑

v∈V (Q)

〈
τ(ev),1

h
〉

=

〈
τ

 ∑
v∈V (Q)

ev

 ,1h

〉
=
〈
τ(n · 1),1h

〉
=
〈
n · 1h,1h

〉
= nh,

and 〈
S ,1h1hT

〉
=

∑
u∈V (G)

∑
v∈V (G)

〈τ(eu), τ(ev)〉 =

〈
τ

 ∑
u∈V (G)

eu

 , τ

 ∑
v∈V (G)

ev

〉
= 〈τ(n · 1), τ(n · 1)〉 =

〈
n · 1h, n · 1h

〉
= n2h.

From the construction, S is a Gram matrix, and is thus in the cone S|V (G)|
+ . Finally,〈

S ,11T
〉
/Tr(S ) = n2h/nh = n.

By Proposition 3.11, whenever the quotient algebra Alc(Hom(Kn, G)) is non-trivial, we can con-
struct the linear map τ on {1} ∪ {xi,v}i∈[n],v∈V (G), then further build a feasible SDP decision vari-
able from the image of τ . By Theorem 3.10, take n = ωlc(G), it follows that ϑ(G) ≥ n = ωlc(G).
Problem 3.1. Can we generalize the above construction to the graphs on which m ≥ 2? Examples
include the cycle graph Ck with k ∈ 2N+ 1 (or graphs containing Ck as an induced subgraph and
has clique number 2), the only vertex subset H is H = V (Ck) and m = 2.
Remark 3.3. Alc(Hom(Kn, G)) is in fact Abelian, since for any u, v ∈ V (G) and i, j ∈ [n],
[xi,u, xj,v] = 1i=j,u=v ·[xi,u, xi,u]+1i ̸=j,u=v ·[0, 0]+1i ̸=j,u ̸∼Gv ·[0, 0]+1i ̸=j,u∼Gv ·[xi,u, xj,v] = 0.

4 Noncommutative Nullstellensätze and algorithmic implementation

In [BWHK23], Watts, Helton, and Klep discuss the algebraic characterization of general non-local
games. They utilized a result in the NC algebraic geometry, known as the NC Nullstellensätz, to
transform the decision of the existence of perfect C∗-strategy and perfect commuting operator (qc-)
strategy into the decision of noncommutative semialgebraic set membership. Their main result in
the paper is summarized as follows:
Theorem 4.1. [BWHK23] LetA be a ∗-algebra, and L ⊆ A is a left ideal. Define the set of positive
and tracial terms in A as

S̃OSA :=

{
a ∈ A : ∃ b ∈ SOSA, a = b+

∑
i

[xi, yi], xi, yi ∈ A

}
,

then
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• If SOSA is Archimedean, or equivalently,A is Archimedean, then the following statements
are equivalent:

– There exists a ∗-representation A → B(H) and a non-trivial state ψ ∈ H, such that
π(L)ψ = {0}.

– −1 6∈ SOSA + L+ L∗.

• If S̃OSA is Archimedean, then the following statements are equivalent:

– There exists a ∗-representation A → B(H) and a non-trivial tracial state ψ ∈ H,
such that π(L)ψ = {0}.

– −1 6∈ S̃OSA + L+ L∗.

The above theorem allows us to transform the decision problem for the non-existence of perfect
strategy of certain non-local games into a search problem for specific polynomials in noncommu-
tative ∗-algebra. Certain toolkits can be applied to conduct the computation, and the hermitian
sum-of-square terms are frequently encoded by utilizing positive-semidefinite variables. The search-
ing procedure thus turns into a semidefinite programming (SDP) [VB96]. We start by presenting
a theorem on deciding whether a semialgebraic set (i.e., a set defined by multivariate polynomial
equalities and inequalities) is empty, and provide detailed steps of its reformulation into an SDP.
Theorem 4.2. [Par00] Let {fi}ri=1, {gj}mj=1 and {hℓ}sℓ=1 be finite families of polynomials on the
commutative ring R[x1, . . . , xn]. Define P ({fi}ri=1), M

(
{gj}mj=1

)
and I ({hℓ}sℓ=1) as follows:

P ({fi}ri=1) =

{
p+

r∑
i=1

qibi : p, qi ∈ SOSR[x1,...,xn], bi ∈M({fi}ri=1)

}

M
(
{gj}mj=1

)
=

{∏
i∈J

gi : J ⊆ {1, . . . ,m}

}

I ({hℓ}sℓ=1) = 〈h1, . . . , hs〉 =

{
s∑

ℓ=1

tℓhℓ : tℓ ∈ R[x1, . . . , xn]

}
,

where we prescribe
∏

j∈∅ gi = 1. The following statements are equivalent:

1. {x ∈ Rn : fi(x) ≥ 0, gj(x) 6= 0, hℓ(x) = 0, ∀i ∈ [r], j ∈ [m], ℓ ∈ [s]} = ∅.

2. ∃f ∈ P ({fi}ri=1), g ∈M({gj}mj=1) and h ∈ I({hℓ}sℓ=1), such that f + g2 + h = 0.

We restrict the reformulation to a special case that m = 0, and the presented certificate degenerates
to the Positivstellensätz (P-satz), i.e., −1 = f + h. Searching for sums of square terms can be
efficiently done when all the involved polynomials admit a degree bound. Given a fixed degree
bound k ∈ N, let [x]k denote the vector of monomials on R[x1, . . . , xn] with degree bound k, i.e.,

[x]k =
(
1, x1, · · · , xn, x21, x1x2, · · · , x2n, · · · , xkn

)T ∈ Nn
k .

It can be easily shown that the entries of [x]k are linearly independent over F ∈ {R,C}. Note that
any refutation (f, h) take the following form

f =
∑
I⊆[r]

pI
∏
i∈I

fi, pI ∈ SOSR[x1,...,xn]; h =

s∑
ℓ=1

tℓhℓ, tℓ ∈ R[x1, . . . , xn].

Denote
∏

i∈I fi as fI . If we restrict the search to be done on Nn
2k, by [Par00] each SOS term pI

is associated with an positive semidefinite matrix PI by pI = [x]TdI
PI [x]dI

. Here the degree dI is
chosen such that deg(pIfI) ≤ 2k, or dI = bk− 1

2 deg(fI)c. We consider the reformulation of f on
the monomial subspace Nn

2k, we denote xα = xα1
1 xα2

2 · · ·xαn
n for α ∈ Nn

2k, it holds that∑
α∈Nn

2k

fαx
α = f =

∑
I⊆[r]

pIfI =
∑
I⊆[r]

(
[x]TdI

PI [x]dI

)
fI =

∑
I⊆[r]

〈
[x]dI

[x]TdI
fI , PI

〉
=
∑
I⊆[r]

〈 ∑
α∈Nn

2k

xαFI,α, PI

〉
=
∑

α∈Nn
2k

∑
I⊆[r]

〈FI,α, PI〉xα.
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By the linear independence among the monomials, fα =
∑

I⊆[r] 〈FI,α, PI〉. As for the ideal mem-
bership, let coefvecd : R[x1, . . . , xn] → Nn

d gives the coefficient vector of a polynomial with
degree bound d under the basis [x]d. For each generator hℓ, let H2k

ℓ be the transformation such that

coefvec2k(tℓhℓ) = H2k
ℓ · coefvecdeg(tℓ)(tℓ), deg(tℓ) = 2k − deg(hℓ).

Then the SDP with degree bound 2k is presented as follows:

SDPk :

min
xℓ,PI

0

−δα,(0,...,0) =
∑s

ℓ=1

(
H

(2k)
ℓ · xℓ

)
α
+
∑

I⊆[r] 〈FI,α, PI〉 , ∀α ∈ Nn
2k;

xℓ ∈ R(
n+2k−deg hℓ
2k−deg hℓ

)
, PI ∈ S

(n+dI
dI

)
+ .

(2)

On noncommutative polynomial rings and algebraically closed fields, the analog of the assertion in
Theorem 4.2 might be more complicated. We refer readers to [HM04] for more detailed discussion.
However, the results stated in Theorem 4.1 can be encoded in the hierarchical SDP as discussed in
equation (2), by setting {fi}ri=1 = {1}, along with some slight modifications: the monomial basis
[x]k should be replaced by a noncommutative version [x]nck over C∗ 〈x1, . . . , xn〉, defined by

[x]nck =
(
1, x1, · · · , xn, x∗1, · · · , x∗n, x21, · · · , x∗n

k
)T
,

whence simplification can be applied for the game algebra A(G) since x∗i,a = xi,a for any gen-
erator xi,a. Thus, [x]nck can be replaced by an involution-free monomial basis, and we de-
note the corresponding subspace as Nn

k (nc). The SOS term is encoded by ([x]ncdI
)∗PI [x]

nc
dI

=〈
PI , ([x]

nc
dI

∗
)T ([x]ncdI

)T
〉

subject to PI ∈ SdimNn
k (nc)

+ . Each generator h∗ℓ of the ideal I(G)∗ =

{
∑

ℓ h
∗
ℓsℓ : sℓ ∈ A(G)} is associated with a matrix H2k

ℓ

∗ and a decision variable x∗ℓ such that

coefvec2k(h
∗
ℓsℓ) = H2k

ℓ

∗ · coefvecdeg(sℓ)(sℓ) : deg(sℓ) = 2k − deg(h∗ℓ ),

analogous to the encoding of I(G). Further simplification can be made by applying the Gröbner
basis method to contract the dimension of decision variables, as shown in the example in section
8.3.2. in [HM04]. Analogous to the commutative case, searching for a refutation in Nn

k (nc) takes
polynomial time with respect to the size of the input/output space of G and the degree bound k.

We implemented the computation using Mathematica package NCAlgebra, and Python toolkit cvxpy
and MOSEK. Codes are available at the GitHub repository5 in files PerfectSynGame.nb and
NCPsatz_SDP_solver.py.

Problem 4.1. In light of the above computation using the first assertion in Theorem 4.1, can we
encode the second assertion concerning the existence of qc-strategy into the hierarchical SDP?

5 Hereditary synchronous subalgebra, and its equivalence to C∗

synchronous subalgebra

Recall that a ∗-algebra A endowed with a SOS cone SOSA possesses a partial ordering ≤, where
a ≤ b if b − a ∈ SOSA for self-adjoint a, b ∈ A. Given a synchronous game G = (I,O, λ), a
vector subspace V ⊆ C[F(|I|, |O|)] is hereditary provided that any f, h ∈ C[F(|I|, |O|)] subject
to 0 ≤ f ≤ h and h ∈ V implies f ∈ V . By Helton et al.’s construction in [HMPS17], introducing
the ∗-positive cone

A(G)+ = SOSC[F(|I|,|O|)]/I(G),

and generalize the ordering by a ≤ b if b−a ∈ A(G)+. This makesA(G) into a semi-pre-C∗-algeba
[Oza13], and A(G) satisfies the Archimedean property since it is quotient of a group algebra. We
present the definition of the hereditary ∗-algebra of synchronous game G, the perfect hered-strategy
and a reformulation of the perfect C∗-strategy.

5https://github.com/HeEntong/BCS/tree/main/mathematica_codes
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Definition 5.1. [HMPS17] Given a synchronous game G = (I,O, λ) with the ∗-closed, two-sided
ideal I(G) as defined in Section 2.3, we define two subspaces Ih(G), Ic(G) containing I(G) as

Ih(G) =
⋂

I(G)⊆V
V is a hereditary subspace

V ; Ic(G) =
⋂

I(G)⊆kerπ

C[F(|I|,|O|)] π−→B(H)

kerπ.

It is easy to verify that these two subspaces are indeed ideals of C[F(|I|, |O|)]. This allows us to
define two subalgebras: hereditary subalgebra Ah(G) := C[F(|I|, |O|)]/Ih(G), C∗ subalgebra
Ac(G) := C[F(|I|, |O|)]/Ic(G). We say that game G has a perfect hered-strategy if Ah(G) 6= (0).
Remark 5.1. Note that G has a perfect C∗-strategy if and only if Ac(G) 6= (0). To explain why this
is so, recall that the C∗-model is induced by a tuple (π, ψ) where π : C[F(|I|, |O|)] → B(H) is a
unital ∗-homomorphism and ψ ∈ H is a state, by P(a, b|i, j) = ψ∗π(xi,a)π(xj,b)ψ. IfAc(G) = (0),
then by Ac(G) ∼= π (C[F(|I|, |O|)]), the only feasible unital ∗-homomorphism π vanishing on I(G)
would vanish on the whole free algebra. Thus either ψ = 0 or the underlying Hilbert space H
admits dimension zero, then no perfect C∗-strategy exists. For the converse, Ac(G) 6= (0) indicates
the existence of a unital ∗-homomorphism π and a non-trivial state ψ vanishing on I(G).

Moreover, since kerπ is itself a hereditary subspace, by the minimality of Ih(G), it follows that
Ih(G) ⊆ Ic(G), orAc(G) ⊆ Ah(G). We call Ih(G) the hereditary closure of I(G). Introducing the
positive cone Ah(G)+ = SOSC[F(|I|,|O|)]/Ih(G) yields that Ah(G) is also a semi-pre-C∗-algebra.

The hereditary closure of the ∗-closed ideal I(G) when G is a synchronous game is also ∗-closed.
Thus, the ∗-closed assumption of Ih(G) is redundant, as in the definition by [HMPS17, Har23].

Theorem 5.1. For a synchronous game G, Ih(G)∗ = Ih(G).

Proof. If suffices to show I(G) \ SOSC[F(|I|,|O|)] = Ih(G) \ SOSC[F(|I|,|O|)]. Note that for any
hereditary subspace V ⊆ C[F(|I|, |O|)], there is no f, g ∈ V ∩ SOSC[F(|I|,|O|)] and f + g 6∈ V .
Thus, Ih(G) expands I(G) by including all hermitian SOS terms f, g ∈ SOSC[F(|I|,|O|)] \ I(G)
subject to f + g ∈ I(G). Moreover, any non-SOS term a ∈

[
Ih(G) \ I(G)

]
\ SOSC[F(|I|,|O|)] will

violate the minimality of the hereditary closure, and is thus safe to be excluded from the construction.
By the above assertions,

Ih(G)∗ =
(
Ih(G) ∩ SOSC[F(|I|,|O|)]

)∗ t (Ih(G) \ SOSC[F(|I|,|O|)]
)∗

=
(
Ih(G) ∩ SOSC[F(|I|,|O|)]

)∗ t (I(G) \ SOSC[F(|I|,|O|)]
)∗

=
(
Ih(G) ∩ SOSC[F(|I|,|O|)]

)
t
(
I(G) \ SOSC[F(|I|,|O|)]

)
=
(
Ih(G) ∩ SOSC[F(|I|,|O|)]

)
t
(
Ih(G) \ SOSC[F(|I|,|O|)]

)
= Ih(G).

We conclude that Ih(G) is automatically a two-sided ∗-closed ideal.

With all previous preliminaries, we are ready to show that the hereditary subalgebra of a synchronous
game is indeed equivalent to the C∗ subalgebra. This assertion directly answers Problem 3.14 in
[HMPS17], and moreover it validates the inequality contested by Problem 3.16 in the same literature.
Theorem 5.2. [Bar02] (Eidelheri-Kakutani separation theorem). Let V be a vector space and let
A,B ⊆ V be disjoint non-empty convex subsets. SupposeB admits a non-empty algebraic interior6,
then there exists a non-zero linear functional φ : V → R such that

∀a ∈ A, φ(a) ≤ inf
b∈B

φ(b).

Lemma 5.3. BothAh(G)+ and SOSC[F(|I|,|O|)]\Ih(G) are convex cones in Herm(C[F(|I|, |O|)]).

Proof. The first assertion follows by definition. As for the second assertion, consider f, g ∈
SOSC[F(|I|,|O|)] \ Ih(G), assume that f + g ∈ Ih(G). By the property of the hereditary clo-
sure, since 0 ≤ f, g ≤ f + g, it follows that f, g ∈ Ih(G), a contradiction. This implies

6The algebraic interior of A is a subset aintV (A) ⊆ A defined by aintV (A) = {a ∈ A : ∀v ∈ V, ∃δv >
0, ∀δ ∈ [0, δv], a+ δv ∈ A}
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f + g ∈ SOSC[F(|I|,|O|)] \ Ih(G). It is not hard to show that SOSC[F(|I|,|O|)] \ Ih(G) is
closed under scalar multiplication in R>0, thus composing above two statements indicates that
SOSC[F(|I|,|O|)] \ Ih(G) is a (positive) convex cone.

Note that Theorem 5.2 is a generalization of the Hahn-Banach separation theorem to an arbitrary
vector space. With Lemma 5.3 we are ready to prove the main result in this section. The following
idea was proposed by Connor Paddock [Pad], we give a formal proof here.
Theorem 5.4. For any synchronous game G, Ah(G) = Ac(G).

Proof. By Ozawa’s remark in [Oza13], the Archimedean property (or Combes axiom in his lan-
guage) indicates the identity 1 is an algebraic interior point of the ∗-positive cone SOSC[F(|I|,|O|)],
and further of SOSC[F(|I|,|O|)] \ Ih(G) when Ah(G) is non-trivial. By Theorem 5.2 and convexity
condition in Lemma 5.3, there exists a linear functional φ : Herm(C[F(|I|, |O|)])→ C, satisfying

φ(Ih(G)) ⊆ R≤0, φ(SOSC[F(|I|,|O|)] \ Ih(G)) ⊆ R≥0.

Without loss of generality, we choose φ such that φ(1) = 1, which is consistent since 1 ∈
φ(SOSC[F(|I|,|O|)] \Ih(G)). The image of φ should vanish on Ih(G) since φ is linear and Ih(G) is
a ∗-closed subspace, thus φ(Ih(G)) = {0}. As for hermitian element h, by Herm(C[F(|I|, |O|)]) =
{s − s′ : s, s′ ∈ SOSC[F(|I|,|O|)]} [Oza13], we conclude that φ(h) = φ(s) − φ(s′) for some her-
mitian SOS terms s, s′. Thus, φ(Herm(C[F(|I|, |O|)])) ⊆ R. It is natural to extend φ to the whole
∗-algebra, by defining the image of a ∈ C[F(|I|, |O|)] as

φ(a) := φ

(
a+ a∗

2

)
+ iφ

(
a− a∗

2i

)
.

This shows that φ(a∗) = φ(a)∗ on C[F(|I|, |O|)].
To apply a variant of the Gelfand-Naimark-Segal (GNS) construction [Arv76] on the ∗-algebra
Ah(G) = C[F(|I|, |O|)]/Ih(G), we set φ(a + Ih(G)) := φ(a) for a ∈ C[F(|I|, |O|)]. Con-
sequently, φ separates {0} and Ah(G)+. The definition is well-defined by the above discus-
sion. We start by defining the sesquilinear form [a, b] = φ(a∗b) for a, b ∈ Ah(G). The subset
N = {ℓ ∈ Ah(G) : φ(ℓ∗ℓ) = 0} is a linear subspace. Moreover, by the Cauchy-Schwarz inequal-
ity, for any a ∈ Ah(G), ℓ ∈ N , due to inequality

0 ≤ |φ((aℓ)∗aℓ)|2 ≤ φ(ℓ∗ℓ)φ((a∗aℓ)∗a∗aℓ) = 0,

we have aN = N , that is, N is a left ideal. As 1 6∈ N , we can define the non-trivial quotient
H̃ = Ah(G)/N equipped with the inner product 〈·, ·〉, where

∀a, b ∈ Ah(G), 〈a+N , b+N〉 := [a, b] = φ(a∗b),

we obtain a pre-Hilbert space H̃, which can be routinely completed into a Hilbert space H [Arv76].
A ∗-representation can be induced onH by setting π(a)(x+N ) = ax+N for any a ∈ Ah(G), x+
N ∈ Ah(G)/N . The image π(Ah(G)/N ) is indeed bounded, since for any a ∈ Ah(G), by the
Archimedean property, there exists λa ∈ R>0 and sa ∈ Ah(G)+, such that λa − a∗a = sa, then

〈π(a)(x+N ), π(a)(x+N )〉 = 〈ax+N , ax+N〉 = φ(x∗a∗ax)

= φ(x∗(λa − sa)x) ≤ λa · φ(x∗x).

Again by the Archimedean property, φ(x∗x) is bounded, indicating that supx∈Ah(G)/N |π(a)(x)| =
‖π(a)‖ < ∞. For any a ∈ Ih(G), 〈π(a)(x+N ), π(a)(x+N )〉 evaluates to φ((ax)∗(ax)) = 0,
by ax ∈ Ih(G) for any x ∈ Ah(G) and Ih(G)∗Ih(G) ⊆ Ih(G). Thus π(Ih(G) = {0}. We
end up with a valid ∗-homomorphism π : C[F(|I|, |O|)] → B(H) vanishing on Ih(G), such that
I(G) ⊆ Ih(G) ⊆ kerπ.

By construction of Ac(G), it is the maximal subalgebra of A(G) such that a ∗-homomorphism
π : C[F(|I|, |O|)] → B(H) subject to I(G) ⊆ kerπ exists. Due to the presence of such map π
on any non-trivial subalgebra Ah(G), by the maximality of Ac(G), we claim that Ah(G) ⊆ Ac(G).
Combined with the reverse inclusion in Remark 5.1, we have Ah(G) = Ac(G), as desired.
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Proposition 5.5. ωhered(G) ≤ ϑ(G) ≤ χhered(G).

Proof. As a direct consequence of Theorem 5.4, ωhered(G) = ωC∗(G) and χhered(G) = χC∗(G).
Combining the inequality ωC∗(G) ≤ ϑ(G) ≤ χC∗(G) the result follows.

6 Quantum version of Boolean constraint systems and NP-hardness
reductions

We now turn to explore the quantum version of general Boolean constraint systems (BCS). BCS
arises in the study of the two-player non-local games with shared quantum states and measurement
operators [CM14]. The transformation from the classical setting is natural, as follows:
Definition 6.1. A BCS is described by a tuple B = (X, {Ui, pi}mi=1), where X = {x1, . . . , xn} is
the universe of binary variables taking values in {0, 1}. For each i ∈ [m], Ui ⊆ X is the context
of constraint i, and pi : {0, 1}|Ui| → {0, 1} is a polynomial on which each satisfying binary value
assignment of Ui evaluates to 1. B has a classical satisfying assignment if there exists a binary
value assignment of X such that all constraints pi evaluate to 1.

Following Ji [Ji13], B has quantum (operator) satisfying assignment if there exists a Hilbert space
H with dimH < ∞, and a unital ∗-homomorphism π : X → B(H) satisfying pi(π(x) : x ∈
Ui) = IH. Moreover, it is required that operators in the same context pairwise commute, i.e., for
any i ∈ [m], x, y ∈ Ui, [π(x), π(y)] = 0. Such satisfiability is notably equivalent to the perfect
q-strategy defined in Section 2.3.
Remark 6.1. For a certain class of BCS problems BCS, we use BCS∗ to denote its quantum version.
In the latter context, we use B ≤p A to specify that the problem class A is polynomial-time (or Karp)
reducible to class B, and thus solving A is not harder than solving B.
Theorem 6.1. [Ji13] 3-Coloring∗ ≤p 3-SAT∗, 1-in-3-SAT∗ ≤p 3-SAT∗, 3-SAT∗ ≤p k-SAT∗,
and 3-SAT∗ ≤p 3-SAT.

Among the many propositions of Theorem 6.1, we are particularly concerned with the first one. Ji’s
reduction utilizes the classical reduction gadget graph with extra structure ensuring the local commu-
tativity of operator assignment. More specifically, it is necessary to add triangular prisms between
vertices corresponding to variables in the same clause (same context) to force commutativity in the
gadget. Harris exploits this prism in [Har23] to deduce so-called weak ∗-equivalence between a syn-
chronous game G and a 3-coloring game on its induced graph. Ji’s remark right before Lemma 3 in
the literature suggests that such construction is rather specific and does not apply to other quantum
versions of NP-hardness reductions. In light of Ji’s comment, we provide another reduction that
preserves the quantum satisfiability criteria, which is the main result of this section.
Theorem 6.2. Clique∗ ≤p 3-SAT∗.

Proof. Given any 3-SAT∗ instance ϕ =
∧m

i=1 Ci, where Ci =
∨3

α=1 xi,α. We denote the support of
underlying variables as x, and each literal satisfies xi,α ∈ x ∪ ¬x. For conciseness, we assume that
within each clause there is no xi,α = xi,α′ or xi,α = ¬xi,α′ for α 6= α′ ∈ [3].

The gadget graph Gϕ is built from ϕ as follows: for each clause Ci, create a cluster of vertices
Si = {vi,α}3α=1 (i.e., vi,α corresponds to literal xi,α), and set V (Gϕ) =

⊔m
i=1 Si. The edges of Gϕ

are undirected, defined by E(Gϕ) = {{vi,α, vj,α′} : ∀i 6= j ∈ [m], α, α′ ∈ [3], xi,α 6= ¬xj,α′}.
Classically, ϕ is satisfiable if and only if the gadget graph Gϕ admits a m-clique.

Like in [Ji13], we need to modify the classical gadget accordingly to validate the reduction in quan-
tum framework. For each vertex pair (vi,α, vj,α′) ∈ V (Gϕ) × V (Gϕ), we delete edges in Gϕ to
ensure that (i) if xi,α = xj,α′ , then Nvi,α ∪ {vi,α} = Nvj,α′ ∪ {vj,α′}; (ii) if xi,α = ¬xj,α′ ,
then Nvi,α ∪ {vi,α} = NSj\{vj,α′} ∪ (Nvi,α ∩ Sj \ {vj,α′}) (or equivalently, Nvj,α′ ∪ {vj,α′} =

NSi\{vi,α} ∪ (Nvj,α′ ∩ Si \ {vi,α})). This operation is applied recursively until there is no further
graph contraction. We denote the resulting graph by G∗

ϕ, i.e., the quantum gadget.

If the 3-SAT∗ instance ϕ admits a satisfying idempotent operator assignment π : x ∪ ¬x → B(H)
which sends ¬xt to I − π(xt) where xt is the positive variable in x, then at each clause Ci,∏

α∈[3](I − π(xi,α)) = 0. By the locally commutativity, this is equivalent to
∑

α∈[3] π(xi,α) � I .
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Without loss of generality, there exists a compression of projections ι ∈ B(H) subject to 0 � ι � I
on π(x ∪ ¬x), such that Im {ι(π(xi,α))} ⊆ Im {π(xi,α)}, and

∑
α∈[3] ι(π(xi,α)) = I . De-

fine the compression map τ = ι ◦ π. The quantum strategy of Hom(Km, G
∗
ϕ) is constructed

as follows: assign Xi,vi,α = τ(xi,α), and Xi,vj,α′ = 0 for any α′ ∈ [3] and j 6= i. Such
construction is valid: whenever vi,α and vj,α′ are disconnected in G∗

ϕ, there are following cases
(i) if i = j and α 6= α′, then by

∑
α∈[3] τ(xi,α) = I and operators are idempotents, equality

Xi,vi,α
Xi,vi,α′ = 0 is automatic; (ii) if i 6= j and xi,α = ¬xj,α′ then by Im(τ(xi,α)τ(xj,α′)) ⊆

Im(π(xi,α)π(xj,α′)) = Im(π(xi,α) − π(xi, α)2) = {0}, and thus Xi,αXj,α′ = 0; (iii) there exists
vk,α′′ such that xi,α = xk,α′′ , and vi,α ∼Gϕ

vk,α′′ but vj,α′ 6∼Gϕ
vk,α′′ . Then it holds that j = k

and Im(τ(xi,α)τ(xj,α′)) = Im(τ(xk,α′′)τ(xj,α′)) = {0}, implying Xi,vi,αXj,vj,α′ = 0; (iv) i 6= j
and there exists vk,α′′ such that xi,α = ¬xk,α′′ , and vi,α ∈ NSk\{vk,α′′} but vj,α′ 6∈ NSk\{vk,α′′}

in Gϕ. In G∗
ϕ, we have τ

(∑
β ̸=α′′ xk,β

)
= I − τ(xk,α′′), and by π(xi,α) = I − π(xk,α′′)

we have Im(τ(xi,α)) ⊆ Im(I − π(xk,α′′)). Since in Gϕ, vj,α′ 6∈ NSk\{vk,α′′}, we have

π
(∑

β ̸=α′′ xk,β

)
π(xj,α) = 0 (due to an analogous argument to (i) and (ii), in our construction,

operators assigned to non-adjacent vertices in Gϕ always yield product zero). Then in G∗
ϕ, it

holds that Im(τ(xi,α)τ(xj,α′)) ⊆ Im(π(xi,α)τ(xj,α′)) = Im((I − π(xk,α′′))τ(xj,α′)) ⊆ Im((I −
τ(xk,α′′))τ(xj,α′)) = Im

(
τ
(∑

β ̸=α′′ xk,β

)
τ(xj,α′)

)
⊆ Im

(
π
(∑

β ̸=α′′ xk,β

)
π(xj,α)

)
= {0},

and again we have Xi,vi,αXj,vj,α′ = 0.

By above construction, the synchronous condition is fulfilled by Xi,vi,α
Xi,vj,α′ = δi,jδα,α′Xi,vi,α

,
and the invalid responses vanish since whenever vi,α 6∼G∗

ϕ
vj,α′ with i 6= j, Xi′,vi,αXj′,vj,α′ =

δi,i′δj,j′Xi,vi,αXj,vj,α′ = 0 for any i′ 6= j′. Finally, for any i ∈ [m],
∑

v∈V (G∗
ϕ)
Xi,v =∑

v∈Si
Xi,v = I , and hence {Xi,v}i∈[m],v∈V (G∗

ϕ)
is a perfect quantum strategy of the graph ho-

momorphism game Hom(Km, G
∗
ϕ).

If the Clique∗ instance G∗
ϕ admits a perfect quantum strategy {Xi,v}i∈[m],v∈V (G∗

ϕ)
, we assign

operator Xv :=
∑

i∈[m]Xi,v to the literal corresponds to each v ∈ V (G∗
ϕ). By Lemma 6.4 the

structure of G∗
ϕ ensures that (i) the corresponding literals with the same underlying variable will be

assigned the same operator; (ii) two literals which are mutually negated underlying variables will be
assigned operators that sum up to I , since if xi,α = ¬xj,α′ then Xvi,α =

∑
v∈Sj

Xv − Xvj,α′ =

I −Xvj,α′ by Lemma 6.3.

Since X2
v =

∑
i,j∈[m]Xi,vXj,v =

∑
i∈[m]X

2
i,v =

∑
i∈[m]Xi,v = Xv , variables x are assigned

to idempotents, and each clause Ci is satisfied since
∑

v∈Si
Xv = I . Locally commutativity is

naturally deduced, by u 6∼G∗
ϕ
v for any u 6= v ∈ Si, [Xu, Xv] =

∑
i,j∈[m][Xi,uXj,v −Xj,vXi,u] =

0. Therefore, we obtain a valid quantum satisfying assignment for ϕ from {Xi,v}i∈[m],v∈V (G∗
ϕ)

.

Lemma 6.3. 7 For every i ∈ [m],
∑

v∈Si

∑
j∈[m]Xj,v = I .

Proof. We first present an auxiliary claim: suppose Vt = {(v1, . . . , vm) : ∀ℓ ∈ [m], vℓ 6∈ St} is the
set of vertex sets such that none of its members is from the vertex cluster St, then it holds that∑

(vi)mi=1∈Vt

x1,v1
x2,v2

· · ·xm,vm
=

∑
(vi)

m
i=1∈Vt

vi∼G∗
ϕ
vi+1

x1,v1
x2,v2

· · ·xm,vm
= 0.

By the pigeonhole principle, since none of (v1, . . . , vm) is from St, there must be a pair of vertices
vi, vj where i, j ∈ [m], such that vi, vj falls into the same cluster Sk where k ∈ [m] \ {t}, with
either vi = vj or vi 6= vj . There might be multiple such pairs, and without loss of generality,
it suffices to examine those connected by the shortest vertex disjoint path vi ⇝ vj (we herein
assume i < j), and if there are several candidates, we focus our analysis on a single selected
pair. According to the length of such shortest paths, we decompose Vt by the following: Vt =

7This property was initially verified through computer-assisted computation of Gröbner basis, for details
see https://github.com/HeEntong/BCS/blob/main/mathematica_codes/3SAT_Clique_Gadget.nb
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⊔
n≥2

∃k∈[m]\{t}
{(v1, . . . , vm) : vi ⇝ vj a shortest path, vi, vj ∈ Sk, j − i = n}. If we fix any vi, vj

that mark the start and end of the shortest path,∑
(vℓ)

m
ℓ=1∈Vt:

vi,vj∈Sk,vi⇝vj

x1,v1
x2,v2

· · ·xm,vm
=

∑
(vℓ)

m
ℓ=1∈Vt:

vi,vj∈Sk,vi⇝vj

∏
ℓ<i

xℓ,vℓ
· (xi,vi

· · ·xj,vj
) ·
∏
ℓ>j

xℓ,vℓ

=
∑

(vℓ)ℓ<i∨ℓ>j :
(vℓ)

m
ℓ=1∈Vt

∏
ℓ<i

xℓ,vℓ
xi,vi

j−1∏
ℓ=i+1

 ∑
w∈V (G∗

ϕ)

xℓ,w

xj,vj

∏
ℓ>j

xℓ,vℓ
=
∏
ℓ<i

xℓ,vℓ

(
xi,vi

xj,vj

)∏
ℓ>j

xℓ,vℓ
= 0.

The proof of our assertion above can be done by noting that
∑

(vi)mi=1∈Vt
x1,v1

x2,v2
· · ·xm,vm

=∑
n≥2

∑
vi⇝vj shortest

vi,vj∈Sk,k∈[m]\{t},j−i=n

x1,v1
x2,v2

· · ·xm,vm
= 0. Utilizing this identity, we can deduce

the result by the following equality: fix any i ∈ [m],
m∏
j=1

∑
v∈V (G∗

ϕ)

xj,v −
m∑
j=1

∏
ℓ<j

∑
w∈V (G∗

ϕ)

xℓ,w

 ·(∑
v∈Si

xj,v

)
·

∏
ℓ>j

∑
w∈V (G∗

ϕ)

xj,w


=

∑
(vℓ)

m
ℓ=1:

∀j∈[m], vj ̸∈Si

x1,v1
x2,v2

· · ·xm,vm
=

∑
(vℓ)mℓ=1∈Vi

x1,v1
x2,v2

· · ·xm,vm
= 0,

which is equivalent to 1 =
∑m

j=1

∑
v∈Si

xj,v . To obtain the assertion for any perfect quantum
strategy, taking the unital ∗-homomorphism π : A(Hom(Km, G

∗
ϕ))→ B(H) with xi,v 7→ Xi,v and

1 7→ I yields the desired result.

Lemma 6.4. If Nu∪{u} = Nv ∪{v} holds for two vertices u ∼G∗
ϕ
v, and {xi,v}i∈[m],v∈V (G∗

ϕ)
are

the generators ofA(Hom(Km, G
∗
ϕ)) then

∑
i∈[m] xi,u =

∑
i∈[m] xi,v . More generally, given vertex

subsets I ⊆ Si and J ⊆ Sj with i 6= j subject to I ∩NJ 6= ∅ (or equivalently, J ∩NI 6= ∅),
and NI ∪ (I ∩NJ ) = NJ ∪ (J ∩NI ), we have

∑
u∈I

∑
i∈[m] xi,u =

∑
v∈J

∑
j∈[m] xj,v .

Proof. We start by the following statement: suppose I = 〈h1, . . . , hℓ〉 is a ∗-closed two-sided
ideal of a ∗-algebra A where hℓ ∈ A, and there exists a ∗-automorphism γ on A such that
{h1, . . . , hℓ} = {γ(h1), . . . , γ(hℓ)}, then for any f ∈ I , we have γ(f) ∈ I . The proof is straight-
forward: f ∈ I implies that there exists {pi}ℓi=1, {qi}ℓi=1 ⊆ A such that f =

∑ℓ
i=1 pihiqi. Then

γ(f) =
∑ℓ

i=1 γ(pi)γ(hi)γ(qi) ∈ I since each γ(hi) is in {h1, . . . , hℓ}.
It can be checked if u ∼G∗

ϕ
v (thus u, v are in distinct clusters) with Nu ∪{u} = Nv ∪{v}, then the

generating relation of I(Hom(Km, G
∗
ϕ)) is invariant under the unital ∗-automorphism γ such that

γ(xi,u) = xi,v , γ(xi,v) = xi,u for all i ∈ [m], and γ|{Xi,w: w ̸=u,v} is the identity map. Suppose
u is in cluster S, then

∑
w∈S

∑
i∈[m] xi,w = 1, by Lemma 6.3 we have

∑
w∈S

∑
i∈[m] γ(xi,w) =∑

i∈[m] γ(xi,u) +
∑

w∈S\{u}
∑

i∈[m] γ(xi,w) =
∑

i∈[m] xi,v +
∑

w∈S\{u}
∑

i∈[m] xi,w = 1 =∑
i∈[m] xi,u +

∑
w∈S\{u}

∑
i∈[m] xi,w, thus

∑
i∈[m] xi,u =

∑
i∈[m] xi,v . The generalization to the

multiple vertices case can be done by contracting I and J into two single vertices vI and vJ

respectively, and assign xi,vI ←
∑

u∈I xi,u, xi,vJ ←
∑

u∈J xi,u.By an analogous argument one
can show that

∑
i∈[m] xi,vI =

∑
i∈[m] xi,vJ , as desired.

Remark 6.2. The derivation of Lemma 6.3 replies purely on the algebraic properties of members of
A(Hom(Km, G

∗
ϕ)). Given thatXi,v are positive operators, the product

∏m
ℓ=1Xℓ,vℓ

with vi, vj ∈ Sk

is annihilated by noting

Tr
(
Xi,vi

Xi+1,vi+1
· · ·Xj,vj

)
= Tr

(
Xi+1,vi+1

· · ·Xj,vj
Xi,vi

)
= 0 =⇒

j∏
ℓ=i

Xℓ,vℓ

∣∣∣∣
vi,vj∈Sk

= 0.

Consequently we have
∏m

ℓ=1Xℓ,vℓ
=
∏

ℓ<iXℓ,vℓ
·
∏j

ℓ=iXℓ,vℓ
·
∏

ℓ>j Xℓ,vℓ
= 0, which directly

implies that the sum
∑

(vℓ)mℓ=1∈Vi

∏m
ℓ=1Xℓ,vℓ

vanishes. This provides a more concise proof of the
auxiliary claim.
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It is not hard to see the gadget utilized in the proof of Theorem 6.2 can also be applied to prove the
polynomial reduction from SAT∗ to Clique∗, which is a more general analog. The structure of the
reduction remains almost unchanged, and we state the result without proof here.
Proposition 6.5. Clique∗ ≤p SAT∗.
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